Glutamic acid decarboxylase 67 mRNA regulation in two globus pallidus neuron populations by dopamine and the subthalamic nucleus.

نویسندگان

  • Lauren M Billings
  • John F Marshall
چکیده

The globus pallidus (GP) consists of two neuron populations, distinguished according to their immunoreactivity for parvalbumin (PV). The PV-immunoreactive (PV+) neurons project preferentially to "downstream" targets such as the subthalamic and entopeduncular nuclei, whereas neurons lacking PV (PV- neurons) project preferentially to the striatum, suggesting a role for PV- cells in feedback to striatal neurons. Although dopamine D2 antagonist administration induces immediate early gene expression preferentially in PV- GP neurons, little is known about long-term regulation of PV- versus PV+ GP neurons. Nigral 6-hydroxydopamine (6-OHDA) lesions or repeated D2-class antagonist injections have been shown to increase pallidal expression of glutamate decarboxylase (GAD(67) isoform) mRNA. This increase in GAD(67) is believed to be secondary to activation of excitatory subthalamopallidal projections. The current study examined the effects of subthalamic nucleus (STN) lesion on 6-OHDA- or repeated D2 antagonist-induced changes in GP GAD(67) mRNA expression in PV+ and PV- neurons. Five or 21 d after nigral 6-OHDA injections or after 3, 7, or 21 d of D2 antagonist administration, GAD(67) mRNA increased in both the PV- and PV+ GP neurons, but the magnitude of the increase was significantly greater in PV- neurons. By contrast, STN lesion resulted in declines in GAD(67) mRNA in both cell populations, with the decreases in PV+ neurons exceeding those in PV- neurons. Furthermore, STN lesion completely blocked 6-OHDA- or D2 antagonist-induced GAD(67) mRNA increases in PV+ cells but only partly offset the GAD(67) mRNA increase in PV- pallidal neurons. Thus, the PV+ and PV- neurons are influenced in qualitatively similar ways by dopamine and the STN, but these cell types exhibit contrasting degrees of regulation by the dopaminergic and STN perturbations. This pattern of results has implications for pallidal control of striatal versus downstream basal ganglia nuclei.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subthalamic nucleus lesions: widespread effects on changes in gene expression induced by nigrostriatal dopamine depletion in rats.

Lesions of the subthalamic nucleus block behavioral effects of nigrostriatal dopamine depletion in rats and primates, but the contribution of this region to the molecular effects of dopaminergic lesions is unknown. The effects of subthalamic nucleus lesions alone or in combination with a 6-hydroxydopamine-induced lesion of the substantia nigra were examined in adult rats. Unilateral subthalamic...

متن کامل

High-frequency stimulation of the subthalamic nucleus selectively reverses dopamine denervation-induced cellular defects in the output structures of the basal ganglia in the rat.

High-frequency stimulation (HFS) of the subthalamic nucleus (STN) is now recognized as an effective treatment for advanced Parkinson's disease, but the molecular basis of its effects remains unknown. This study examined the effects of unilateral STN HFS (2 hr of continuous stimulation) in intact and hemiparkinsonian awake rats on STN neuron metabolic activity and on neurotransmitter-related gen...

متن کامل

6-Hydroxydopamine lesions of the nigrostriatal pathway alter the expression of glutamate decarboxylase messenger RNA in rat globus pallidus projection neurons.

In situ hybridization was used to study the effect of 6-hydroxydopamine-induced damage to the midbrain dopaminergic neurons on the level of glutamate decarboxylase mRNA in globus pallidus neurons in the rat. Some animals received an injection of Fluoro-gold in the entopeduncular nucleus or the substantia nigra prior to the 6-hydroxydopamine lesion in order to identify glutamic acid decarboxylas...

متن کامل

Striking the Right Balance: Cortical Modulation of the Subthalamic Nucleus-Globus Pallidus Circuit

The subthalamic nucleus-globus pallidus network is a potential source of oscillations in Parkinson's disease, but the mechanism is unknown. In this issue of Neuron, Chu et al. (2015) present a cortically driven form of heterosynaptic plasticity that could promote oscillatory activity after dopamine depletion.

متن کامل

Alterations in expression of messenger RNAs encoding two isoforms of glutamic acid decarboxylase in the globus pallidus and entopeduncular nucleus in animals symptomatic for and recovered from experimental Parkinsonism.

Glutamic acid decarboxylase (GAD65, GAD67) mRNA expression was measured in the globus pallidus (GP) and entopeduncular nucleus (ENTO) of normal, and MPTP-lesioned cats symptomatic for and recovered from MPTP-induced Parkinsonism. In the ENTO of symptomatic cats, GAD65 and GAD67 mRNA expression were both significantly increased, while only GAD67 gene expression was increased in the GP. Levels of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 24 12  شماره 

صفحات  -

تاریخ انتشار 2004